Entropy generation in MHD Darcy–Forchheimer flow of hybrid nanomaterial: A numerical study of local similar solution

Author:

Hayat Tasawar1,Yazman Muhammad1,Muhammad Khursheed2,Alsaedi Ahmed3

Affiliation:

1. Department of Mathematics Quaid‐I‐Azam University Islamabad Pakistan

2. Department of Humanities and Sciences School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan

3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group Department of Mathematics Faculty of Science King Abdul‐Aziz University Saudi Arabia

Abstract

AbstractThe presented article aims to analyze the three‐dimensional electrically conducting flow induced by a rotating stretchable disk. A hybrid nanomaterial is generated by adding copper and graphene oxide nanoparticles to kerosene oil, which saturates through a Darcy–Forchheimer porous medium. The article also reports on entropy generation and the Bejan number. To solve the associated partial differential equations, appropriate transformations are applied to convert them into ordinary differential equations. These equations are then solved numerically to obtain the desired solutions. The significance of these nanoparticles in kerosene oil is due to their ability to enhance heat transfer and thermal conductivity, thereby optimizing the performance of the rotating stretchable disk system. The synergistic effects of these components lead to improved energy efficiency and overall system effectiveness. The results for various quantities of interest, such as velocity, entropy, temperature, and the Bejan number, are presented graphically and analyzed considering the influence of relevant parameters. Moreover, the comparative analysis indicated that hybrid nanofluid have dominating effect than base liquid (kerosene oil).

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3