Theoretical investigation of MHD peristalsis of non‐Newtonian nanofluid flow under the impacts of temperature‐dependent thermal conductivity: Application to biomedical engineering

Author:

Iqbal Jamshaid12ORCID,Abbasi Fahad Munir1ORCID

Affiliation:

1. Department of Mathematics COMSATS University Islamabad Islamabad Pakistan

2. Department of Mathematics Vanderbilt University Nashville Tennessee USA

Abstract

AbstractNanofluids have the tendency to improve thermal characteristics in a broader context, such as in medical processes, industrial cooling applications, the transportation industry, hybrid engines, gas temperature reduction, microelectromechanical systems, refrigerators, nuclear reactors, vehicle temperature control, pharmaceutical processes, thermal management of vehicles, microelectronics, and chillers, etc. Therefore, present study investigates the effects of a two‐dimensional magnetohydrodynamics (MHD) peristalsis of the Carreau–Yasuda nanofluid through conservation principles of energy, concentration, mass, and momentum, which is motivated by recent advances in biological engineering. The entire system is coupled through viscous dissipation, Joule heating, a heat sink/source, Brownian diffusion, a radially magnetic field, thermophoresis motion, and slip conditions in a curved geometry. Lubrication theory is employed in order to simplify governing equations. Resulting systems are nonlinear coupled differential equations whose exact solutions are difficult to obtain, therefore, numerical solutions are obtained through NDSolve in Mathematica. The key features of peristaltic movement and rates of heat transfer are disseminated in detail via graphical representations for variation of various physical parameters. According to the findings, for greater values of the Hartman number, temperature increases, and the velocity decreases. The validity of these results has been verified using the existing published articles of Hayat et al. (2018).

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3