Integral nonlocal stress gradient elasticity of functionally graded porous Timoshenko nanobeam with symmetrical or anti‐symmetrical condition

Author:

Li Chang12ORCID,Qing Hai1ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control for Aerospace Structures Nanjing University of Aeronautics and Astronautics Nanjing China

2. Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada

Abstract

AbstractUtilization of symmetrical or anti‐symmetrical condition could improve the calculation efficiency. In this paper, a mathematical formulation is proposed to deal with the symmetrical or anti‐symmetrical condition in an integral nonlocal stress gradient model (INSGM), which is transformed equivalently into differential form with constitutive boundary condition as well as constitutive symmetrical or anti‐symmetrical condition. Unlike general constitutive boundary conditions, an integral item is introduced to constitutive symmetrical and anti‐symmetrical conditions, and they are opposite to each other. Based on INSGM with symmetrical or anti‐symmetrical conditions, static bending of simply‐supported (SS) and clamped‐clamped (CC) functionally graded porous Timoshenko nanobeams is investigated for symmetrical loads, including uniformly distributed load (UDL) and middle point force, as well as anti‐symmetrical loads, including anti‐symmetrical UDL and middle point moment. The exact solutions are deduced and expressed in explicit form for different boundary and loading conditions. Calculation shows that, under UDL, bending deflections of half Timoshenko nanobeams based on current model agree well with those for whole Timoshenko nanobeams based on general INSGM for both SS and CC boundary conditions. Numerical study is performed to show the effectiveness of current model.

Funder

National Natural Science Foundation of China

China Scholarship Council

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An investigation on the torsional vibration of a FG strain gradient nanotube;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3