Energy based methods applied in mechanics by using the extended Noether's formalism

Author:

Abali Bilen Emek1ORCID

Affiliation:

1. Division of Applied Mechanics, Department of Materials Science and Engineering Uppsala University Uppsala Sweden

Abstract

AbstractPhysical systems are modeled by field equations; these are coupled, partial differential equations in space and time. Field equations are often given by balance equations and constitutive equations, where the former are axiomatically given and the latter are thermodynamically derived. This approach is useful in thermomechanics and electromagnetism, yet challenges arise once we apply it in damage mechanics for generalized continua. For deriving governing equations, an alternative method is based on a variational framework known as the extended Noether's formalism. Its formal introduction relies on mathematical concepts limiting its use in applied mechanics as a field theory. In this work, we demonstrate the power of extended Noether's formalism by using tensor algebra and usual continuum mechanics nomenclature. We demonstrate derivation of field equations in damage mechanics for generalized continua, specifically in the case of strain gradient elasticity.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3