Nonsimilar modeling analysis of Carreau–Yasuda mixed convective flow in a porous medium subjected to Soret and Dufour influences

Author:

Cui Jifeng1,Ashraf Qurat‐Ul‐Ain2,Cheng Wenhao1,Farooq Umer23ORCID,Hussain Muzamil24ORCID

Affiliation:

1. College of Science Inner Mongolia University of Technology Hohhot PR China

2. COMSATS University Islamabad, Islamabad Capital Territory Pakistan

3. College of Mathematical Science Harbin Engineering University Harbin City Heilongjiang China

4. Department of Mathematics University of the Poonch Rawalakot Azad Kashmir Pakistan

Abstract

AbstractThis nonsimilar convection study is about the flow of Carreau–Yasuda (CY) nanofluid model above a vertically extendible surface. Convection in a fluid‐filled permeable medium has given due consideration because of its relevance in a variety of applications, including insulation, relocation of water from geothermal reservoirs, storage of nuclear waste, renewable energy, mechanical engineering, and enhanced oil reservoir recovery. By virtue of linear stretching and buoyancy effects, flow in a stationary fluid is induced along a vertical porous surface. In x‐momentum equation, linear buoyancy in the context of temperature and concentration is taken into consideration. Modeling of energy expression is done in the presence of Dufour and Soret influences. Governing differential system describing convection equations is changed into nonlinear partial differential system (PDE) by implementing applicable nonsimilar transformations. By making use of analytical local nonsimilarity (LNS) technique and bvp4c (numerical finite difference‐based algorithm), the transformed dimensionless nonsimilar structure is simulated numerically. At the end, the alteration of important nondimensional numbers is studied on transport quantities such as temperature, concentration and velocity field. The repercussions of relevant parameters on drag coefficient, Nusselt number and Sherwood number have been tabulated. Numerical simulations of nonsimilar model suggests that the velocity profile reduces due to rise in the values of Weissenberg number, porosity and suction parameter. The temperature profile is increased in comparison with the higher estimates, Eckert, and Dufour numbers. Because of larger values of Soret and Prandtl number, an increase in concentration profile is seen. Friction coefficient and Nusselt number increases with respect to higher estimations of porosity parameter, Weissenberg number and Prandtl number respectively, whereas they decrease against Dufour and Eckert variations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3