MHD flow of the novel quadruple hybrid nanofluid model in a stenosis artery with porous walls and thermal radiation: A Sisko model‐based analysis

Author:

Omama Mohamed12ORCID,Arafa Ayman A.13ORCID,Elsaid Ahmed14ORCID,Zahra Waheed K.15ORCID

Affiliation:

1. Institute of Basic and Applied Sciences Egypt‐Japan University of Science and Technology Alexandria Egypt

2. Basic Engineering Sciences Department Faculty of Engineering at Benha Benha University Benha Egypt

3. Department of Mathematics Faculty of Science Sohag University Sohag Egypt

4. Department of Mathematics and Engineering Physics Faculty of Engineering Mansoura University Mansoura Egypt

5. Department of Engineering Physics and Mathematics Faculty of Engineering Tanta University Tanta Egypt

Abstract

AbstractThis study introduces a mathematical model that describes the Magnetohydrodynamics (MHD) flow of blood in a porous stenosis artery, incorporating a new hybrid nanofluid (HNF) model known as ‘Quadruple’ or the tetra‐(HNF) model. An innovative aspect of this study lies in the unexplored combination of tetra‐hybrid nanoparticles with the Sisko rheological model. The conventional Tiwari and Das (HNF) model has been expanded to accommodate the tetra‐(HNFs) case. To transform the governing partial differential equations into ordinary differential equations, a series of variable similarity transformations are employed. The resulting highly nonlinear simultaneous equations are efficiently solved using the shooting method. Numerical computations are conducted to investigate various parametric conditions, and graphs are utilized to visualize notable aspects of flow velocity and temperature. A comprehensive analysis is provided to illustrate the influence of flow parameters on wall shear stress and local Nusselt number, which are depicted through figures and tables. The study shows that the novel tetra‐HNF exhibits enhancements in blood flow when compared to nanofluids with a lower number of hybrids. Increasing the flow power index of non‐Newtonian Sisko model leads to improve convective heat transfer. Furthermore, parameters such as porosity, thermal radiation, and magnetic effects exhibit noticeable impacts on blood flow, temperature, and associated risks in constricted arteries.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3