Heat and mass transfer analysis for MHD non‐miscible micropolar and Newtonian fluid flow in a rectangular porous channel

Author:

Kumar Ankit1ORCID,Yadav Pramod Kumar1

Affiliation:

1. Department of Mathematics Motilal Nehru National Institute of Technology Allahabad Prayagraj Uttar Pradesh India

Abstract

AbstractThe aim of the present work is to examine the entropy production characteristics, thermal profile, and flow behaviour of two non‐miscible natures of Newtonian and micropolar fluids, which take place through a rectangular porous enclosure channel. The flow region is divided into two distinct porous zones of the channel and is subjected to a constant oriented magnetic field. The Eringen's micropolar fluid is taking place in the upper porous zone, whereas in the lower porous zone, the Newtonian fluid is flowing. The wall surface of a rectangular porous channel is isothermal, and the flow of immiscible fluid through a porous channel takes place because of a constant pressure gradient. No slip condition is imposed on the static walls and continuity of vorticity, velocity, shear stress component, thermal distribution, and thermal flux are prescribed at the interface. Here, the production of entropy due to fluid friction and thermal exchange for non‐miscible Newtonian and micropolar fluids is evaluated. The characteristics of various estimated parameters on thermal and flow properties, such as Bejan number distribution, flow velocity, entropy production, and thermal profile, are discussed. The obtained results show that entropy production is directly proportional to viscous dissipation and Reynolds number, whereas it has a reverse nature with micropolarity parameter, inclination angle parameter, and Hartman number. Our results corroborate with previous published results.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3