A Hermitian Cn finite cylindrical layer method for 3D size‐dependent buckling and free vibration analyses of simply supported FG piezoelectric cylindrical sandwich microshells subjected to axial compression and electric voltages

Author:

Wu Chih‐Ping1ORCID,Hsu Hao‐Ting1

Affiliation:

1. Department of Civil Engineering National Cheng Kung University Tainan Taiwan

Abstract

AbstractWithin the framework of the consistent couple stress theory (CCST), we develop a Hermitian Cn (n = 1, 2) finite cylindrical layer method (FCLM) for carrying out the three‐dimensional (3D) analysis of the size‐dependent buckling and free vibration behaviors of simply supported, functionally graded (FG) piezoelectric cylindrical sandwich microshells. The microshells of interest are placed under closed‐circuit surface conditions and subjected to axial compression and electric voltages. We derive a 3D weak formulation based on Hamilton's principle for this study. In the resulting formulation, the microshell is artificially divided into nl microlayers, with the elastic displacement components and the electric potential selected as the primary variables. By incorporating a layer‐wise kinematic model into our weak formulation, we develop a Hermitian Cn FCLM, which can be used for analyzing FG piezoelectric cylindrical sandwich microshells. Each primary variable is expanded as a double Fourier series in the in‐surface domain and is interpolated in the thickness direction using Hermitian Cn polynomials. The accuracy and the convergence rate of our Hermitian Cn FCLMs are validated by comparing the solutions they produce for FG piezoelectric cylindrical macroshells and FG elastic cylindrical microshells with the relevant exact and approximate 3D solutions which have been reported in the literature. The material length scale parameter of our FCLMs is set at zero in the comparison made with the FG piezoelectric macroshells. In contrast, the piezoelectric and flexoelectric effects are ignored in the comparison made with the FG elastic microshells. The impact of some essential factors on the critical load, critical voltage, and natural frequency of simply supported FG piezoelectric cylindrical sandwich microshells is assessed. The important factors are identified as piezoelectricity, flexoelectricity, the material length scale parameter, the inhomogeneity index, the radius‐to‐thickness ratio, the length‐to‐radius ratio, and the magnitude of the applied voltage and the applied load.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3