A passive control of magnetohydrodynamic flow of a blood‐based Casson hybrid nanofluid over a convectively heated bi‐directional stretching surface

Author:

Abas Syed Arshad1,Ullah Hakeem1,Islam Saeed1,Fiza Mehreen1

Affiliation:

1. Department of Mathematics Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan

Abstract

AbstractHybrid nanofluids, which are used in nanotechnology, are advanced fluid classes with enriched thermal properties that produce superior outcomes than nanofluids. There are too many applications of hybrid nanofluids in engineering cosmetics, the automotive industry, the home industry, cancer treatment, textiles, paper plastics, paints, and soaps. The purpose of this study is to investigate the heat transfer rate of magnetohydrodynamic flow of Casson hybrid non‐Newtonian nanofluid across an enlarging surface. The current work focuses on magnetohydrodynamic hybrid nanoliquid flow across an extending 3‐D sheet. Additionally, zero mass flux and an adequate convective heating procedure are used as boundary conditions in this investigation. Blood serves as the base fluid, into which copper and alumina nanoparticles are dissolved to form a hybrid nanofluid. Adjusting the applicable similarity transformation, the present modeled equations are converted into dimensionless form. The Homotopy analysis approach (HAM) computes the resulting systems and illustrates them graphically to explain the flow behavior at the extending electrically conducting surface. Additionally, for changes in the non‐dimensional physical constraint values, the variations in physical quantities such as the skin friction, temperature, Nusselt number and velocity profiles are explained. The results of the current investigation demonstrated that a magnetic field and a non‐Newtonian parameter reduce the hybrid nanoliquid's velocity. The temperature profile goes up with thermophoresis and Brownian motion. The component of velocity is found to fall as the stretching ratio parameter rises, while the component of velocity in the direction experiences the opposite impact. When the parameters of a chemical reaction are adjusted upwards, the concentration profile deteriorates. It is originated that the rate at which heat is transferred by hybrid nanofluids is significantly more progressive than that of nanofluids.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical study for MHD peristaltic flow of nanofluid with variable viscosity in the porous channel;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3