Numerical solution of nonlinear diffusion advection Fisher equation by fourth‐order cubic B‐spline collocation method

Author:

Tiwari Shubham Kumar1ORCID,Ghosh Pradyumna2,Chopra Manish3,Das Subir1ORCID

Affiliation:

1. Department of Mathematical Sciences Indian Institute of Technology (BHU) Varanasi India

2. Department of Mechanical Engineering Indian Institute of Technology (BHU) Varanasi India

3. Radiation Safety Systems Division Bhabha Atomic Research Centre Mumbai India

Abstract

AbstractThis article investigates the effect of diffusion, advection and Fisher terms when nonlinear diffusion occurs in a porous medium. The main advantage of this article is the derivation of a fourth‐order cubic B‐spline collocation method to solve the nonlinear advection‐diffusion Fisher equation, which represents many important natural phenomena. The Crank‐Nicholson method has been used to discretize space and time. The salient feature of the article is the demonstration of the unconditional stability of the proposed method using the Fourier method. While applying on existing problem having an exact solution, it is shown through error analysis that our proposed scheme is very effective. The important feature of the article is the graphical showcasing of the solution profiles for different particular cases.

Funder

Board of Research in Nuclear Sciences

Bhabha Atomic Research Centre

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3