Insight of Jeffrey flow over a stretching Riga plate with activation energy and viscous dissipation: Melting heat transfer regime

Author:

Javed Mubashar1ORCID

Affiliation:

1. Department of Mathematics National University of Modern Languages Rawalpindi Pakistan

Abstract

AbstractPresent article highlights the significance of Arrhenius activation energy along with viscous dissipation in Jeffrey fluid over a Riga plate. Riga plate is basically an actuator made up of array of magnets and electrodes scaled on a plane surface to tackle the weaker electrical conductivity during fluid flow. In order to ensure the novelty, a reliable melting heat surface condition has been incorporated on nonlinear stretching Riga plate of variable thickness to reconnoiter features of heat transfer. Moreover, stagnation point has been retained in this study. Adequate transformations are employed in order to attain system of nonlinear ordinary differential equations. A well known semi analytical technique (Homotopy analysis method) is utilized to obtain series solutions of prevailing dimensionless equations. Influence of several apposite parameters on velocity, thermal and concentration distributions is analyzed graphically. Physical evaluation and graphical sketch is presented for drag force coefficient and rate of heat transfer. Analysis of velocity as well as associated boundary layer thickness gives the growing up impact for the strength of modified Hartmann number. Enhancement of dimensionless reaction rate and endothermic/exothermic reaction parameter results in increment for heat flux over stretching Riga plate. Increase in thermal distribution takes place for higher Eckert number while thermal boundary layer thickness depicts opposite trend in this case. Concentration boundary layer thickness enhances while concentration profile declines for higher Schmidt number. Velocity distribution is found to be incremented for intense melting process. Higher dimensionless activation energy parameter is analyzed to be responsible for growing up concentration field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3