Interaction among interfacial offset cracks in composite materials under the anti‐plane shear loading

Author:

Tanwar Anshika1ORCID,Das Subir1ORCID,Craciun Eduard‐Marius2,Altenbach Holm3ORCID

Affiliation:

1. Department of Mathematical Sciences Indian Institute of Technology (BHU) Varanasi India

2. Faculty of Mechanical, Industrial, and Maritime Engineering Ovidius University of Constanta Constanta Romania

3. Faculty of Mechanical Engineering Otto‐von‐Guericke University Magdeburg Magdeburg Germany

Abstract

AbstractThe present article considers an anti‐plane stress problem of three cracks at different orthotropic materials' interfaces. According to the geometry of the problem, the governing equations and mixed boundary conditions have been formulated. Fourier integral transformation is used to convert the mixed boundary value problem into dual integral equations, which gives two equations containing infinite series. The investigation of the problem concerning anti‐plane cracks subjected to static loadings is done with the help of the Schmidt method to satisfy the given boundary conditions. The difference in displacements is expanded to proceed further in the problem, which becomes zero outside the cracks. Numerical computations are carried out for the graphical representation of stress intensity factors (SIFs) at all cracks' tips. The Interaction among the cracks as those are in close proximity to each other or move away are represented pictorially. Detailed numerical results and discussion are done for the considered materials, which include aluminium, epoxy and graphite epoxy. The novelty of the present article is the numerical analysis and pictorial presentation of SIFs at the tips of interfacial offset parallel cracks for various crack lengths and normalised heights for different combinations of materials. The authors have obtained variations in SIFs for the cracks at the interfaces of dissimilar composite materials.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3