Neural network design for cubic autocatalysis chemical processes, the flow of a Darcy‐Forchheimer viscous fluid is optimized for entropy

Author:

Shah Farooq Ahmed1ORCID,Raja Muhammad Asif Zahoor2ORCID,Shoaib Muhammad3,Zamir Tayyab1,Ihsan Adil14

Affiliation:

1. Department of Mathematics COMSATS University Islamabad Attock Pakistan

2. Future Technology Research Center National Yunlin University of Science and Technology Douliou Yunlin Taiwan

3. AI Centre Yuan Ze University Taoyuan Taiwan

4. Department of Mathematics, Faculty of Natural Sciences HITEC University Taxila Cantt Pakistan

Abstract

AbstractIn this article, neural network backpropagation (NNBP) is used to present two‐dimensional Darcy‐Forchheimer viscous fluid (DFVF) of viscous liquid against a stretching sheet under the influence of heat sink/source and viscous dissipation. Mathematical modelling and numerical simulation are also discussed. Thermal polymer processing, engineering processes, and industrial processes all benefit from the dynamic entropy generation phenomenon. Scientists are primarily interested in finding ways to decrease entropy formation to polish up the thermal performance of industrial systems. In this continuation, the optimal frame for the Darcy‐Forchheimer flow with a curved surface has been developed. Non‐linear partial systems are converted to dimensionless differential systems through the employment of the appropriate variables. Utilizing tools from the bvp4c method, the problem's highly nonlinear equations are numerically solved. These ODEs are solved by applying the bvp4c solution approach to produce the reference dataset for NNBP. Using this reference dataset in MATLAB, the graphs for the solution and error analysis for changing various parameters are analyzed. The performance of NNBP is validated using mean squared error data, regression analysis, and error histogram. The DFVF solution is examined using the testing, validation, and training procedures. Examined through influential variables the effects of fluid flow, thermal field, Bejan number, and concentration.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3