Non‐Darcy‐Forchheimer flow of Casson‐Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole

Author:

B Nagaraja1,AR Ajaykumar2,A Felicita1,Kumar Pradeep1ORCID,NG Rudraswamy3

Affiliation:

1. Department of Mathematics School of Engineering Presidency University Bengaluru Karnataka India

2. Department of Mathematics KNS Institute of Technology Bengaluru Karnataka India

3. Department of Mathematics P C Jabin Science College (Autonomous) Hubballi Karnataka India

Abstract

AbstractUsing a non‐Darcy‐Forchheimer model with nonlinear thermal radiation, homo‐heterogenic reactions, Joule heating, exponential heat propagation, suction/injection, and melting heat peripheral conditions, the mathematical possibility of Casson‐Williamson nanofluid flow carried over a magnetic dipole‐enabled curved stretching sheet has been considered. Using similarity catalysts, the complex partial differential equations needed to display the given flow are transformed into more manageable ordinary differential equations. The Runge‐Kutta‐Fehlberg (RKF) 4–5th order tool has been used to draw solution graphs. Each graph has been analyzed in depth and commented on. The research shows that the inverse Darcy parameter and the suction/injection parameter have a detrimental effect on velocity distribution. In addition, the investigation showed that the nonlinear radiation parameter and the melting parameter had contradictory effects on the thermal profile. As a value addition, the flow and temperature distribution have been shown graphically using streamlines and isotherms. Therefore, considered flow over curved geometry is very new with cutting‐edge results which are useful in further research in the field.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3