A numerical approach to radiative ternary nanofluid flow on curved geometry with porous media and multiple slip constraints

Author:

Mumtaz Muhammad1ORCID,Islam Saeed1,Ullah Hakeem1,Dawar Abdullah1,Shah Zahir2

Affiliation:

1. Department of Mathematics Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan

2. Department of Mathematical Sciences University of Lakki Marwat Lakki Marwat Khyber Pakhtunkhwa Pakistan

Abstract

AbstractEnergy scarcity is among the biggest global challenges which is aggravating with each passing day due to ever increasing energy demands of contemporary livings as well as industrial requirements verses finite and rapidly depleting fossil reserves of our planet. Improving energy efficiency is one of the effective ways to cope with this challenge. Ternary nanofluids (TNF) are a dynamic novel class of fluids possessing unique thermophysical and other functional characteristics making them the most efficient heat transporting fluids of 21st century. These fluids have promising applications in major manufacturing and processing industries, emerging nanotechnologies and bio‐medical domains. The novel theme of this pragmatic study is analysis of bio‐convective TNF flow by stretchable porous curved surface considering effects of thermal radiation, chemical reaction, magnetic field, and various slip constraints. The modeled partial differential equations (PDEs) governing fluid flow under presumptions are converted to ordinary differential equations (ODEs) by suitable transformation relations. Numerical solutions are presented in graphical sketches and tabular forms using MATLAB bvp4c package for physical interpretations of sundry controlling variables impacts. To gauge veracity of computed results, comparisons with already published results have been presented. Moreover, the statistical concept of Pearson correlation coefficient has been employed to prove strong relationship between slip parameters and physical quantities. Research concludes that thermal efficiency of TNF improves by rising velocity slip, magnetic force, curvature factor, thermal radiation, and thermophoresis effects. Velocity slip and thermal slip improve concentration boundary layer. Gyrotactic microorganisms’ density improves for higher velocity slip, temperature slip while depreciates for larger values of nanoparticle concentration slip and motile organism density slip.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3