Numerical solution for the interior electric displacement of the moving DBY‐PS model for semi‐permeable cracked piezoelectric material

Author:

Singh Vikram1,Jangid Kamlesh1ORCID

Affiliation:

1. Department of Mathematics Central University of Rajasthan, Kishangarh Ajmer India

Abstract

AbstractIn this study, we analysed a moving crack at the interface of an infinitely long piezoelectric bilayer using the Dugdale–Barenblatt yield (DBY) model and the polarisation saturation (PS) model. To model the moving crack problem, a Yoffe‐type crack moves at a constant subsonic speed on the interface of an infinitely long piezoelectric bilayer. The crack faces are assumed to be semi‐permeable, and at the boundary of the bilayer, in‐plane electrical and out‐of‐plane mechanical stresses are applied. Due to the application of electro‐mechanical loads, cracks propagate, mechanical yielding zones and electric saturation zones are developed. To arrest the crack from further propagation, mechanical yield stress and saturation electric displacement are applied at the developed zones. To address this problem analytically and numerically, the mixed boundary value problem is transformed into a set of coupled Fredholm integral equations (FIEs) of the second kind using the Fourier transform and the Copson method. The closed‐form analytical expressions for the length of the electrical saturation zone (ESZ), whether longer, shorter or equal to the mechanical yielding zone (MYZ), show dependence on external electro‐mechanical loads under semi‐permeable crack conditions. The algorithm to solve the electric crack condition parameter (ECCP) has been defined using numerical discretization and the bisection method. Illustrative examples demonstrate the proposed technique's effectiveness and suitability for Yoffe‐type moving cracks. The numerical results show the convergence of the ECCP. Furthermore, the numerical results show how mechanical and electrical zone lengths and energy release rate (ERR) are affected by electrical and mechanical loads, strip thickness and crack velocity. In addition, the size of the mechanical yielding zone is consistently promoted by electrical load, while the promotion or prevention of the electrical saturation zone by mechanical load depends on the relative sizes of the nonlinear zones.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3