Assessment of non‐polynomial shear deformation theories for the free vibration and transient analysis of plates with functionally‐graded materials supported on an elastic foundation

Author:

Chanda Aniket Gopa1ORCID,Kontoni Denise‐Penelope N.23ORCID,Kumar Haldar Amit14ORCID,Guan Zhongwei567

Affiliation:

1. Bernal Institute School of Engineering University of Limerick Limerick Ireland

2. Department of Civil Engineering School of Engineering University of the Peloponnese Patras Greece

3. School of Science and Technology Hellenic Open University Patras Greece

4. Department of Mechanical and Automobile Engineering Technological University of the Shannon Limerick Ireland

5. School of Engineering University of Liverpool Liverpool UK

6. Advanced Materials Research Centre Technology Innovation Institute Abu Dhabi United Arab Emirates

7. School of Mechanical Engineering Chengdu University Chengdu P. R. China

Abstract

AbstractIn this article, various non‐polynomial higher‐order shear deformation theories are applied for the first time to analyze the free vibration and transient responses of plates with functionally graded material (FGM) supported on an elastic foundation. The shear deformation theories account for the non‐linear variation of the transverse shear strains with various warping functions, namely trigonometric, inverse hyperbolic, and inverse trigonometric ones. These models also inherently satisfy the traction‐free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plates and do not require any shear correction factor. A two‐parameter model, namely Winkler‐Pasternak's elastic foundation model, is utilized to develop the interaction between the FGM plates and the elastic medium. The governing equations of motion are obtained using Hamilton's principle and solved analytically using Navier's solution scheme. Furthermore, the transient responses of the plates are obtained using Newmark's average acceleration method. The applicability of the present theories is established by solving several numerical problems and validating the results with the solutions available in the literature. The effects of various parameters like span‐thickness ratios, aspect ratios, gradation coefficients, mechanical loads, and foundation stiffness on the fundamental frequencies and the transient responses of the plates are thoroughly investigated. The comparison of the results reveals the efficiency of the non‐polynomial functions, and the capability of efficient prediction of the structural responses of the FGM plates at a similar computational cost compared to established models in the literature. Furthermore, the results show that the stiffness of the elastic foundation can tweak the stiffness characteristics of the FGM plate resulting in significant changes in the natural frequencies and more controlled displacement‐time responses.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3