Referenceless Nyquist ghost correction outperforms standard navigator‐based method and improves efficiency of in vivo diffusion tensor cardiovascular magnetic resonance

Author:

Huo Zimu12ORCID,Wen Ke13ORCID,Luo Yaqing13ORCID,Neji Radhouene4ORCID,Kunze Karl P.4,Ferreira Pedro F.13ORCID,Pennell Dudley J.13ORCID,Scott Andrew D.13ORCID,Nielles‐Vallespin Sonia13ORCID

Affiliation:

1. CMR Unit, Royal Brompton Hosptial Guy's and St Thomas' NHS Foundation Trust London UK

2. Department of Bioengineering Imperial College London London UK

3. NHLI Imperial College London London UK

4. MR Research Collaborations Siemens Healthcare Limited Camberley UK

Abstract

AbstractPurposeThe study aims to assess the potential of referenceless methods of EPI ghost correction to accelerate the acquisition of in vivo diffusion tensor cardiovascular magnetic resonance (DT‐CMR) data using both computational simulations and data from in vivo experiments.MethodsThree referenceless EPI ghost correction methods were evaluated on mid‐ventricular short axis DT‐CMR spin echo and STEAM datasets from 20 healthy subjects at 3T. The reduced field of view excitation technique was used to automatically quantify the Nyquist ghosts, and DT‐CMR images were fit to a linear ghost model for correction.ResultsNumerical simulation showed the singular value decomposition (SVD) method is the least sensitive to noise, followed by Ghost/Object method and entropy‐based method. In vivo experiments showed significant ghost reduction for all correction methods, with referenceless methods outperforming navigator methods for both spin echo and STEAM sequences at b = 32, 150, 450, and 600  . It is worth noting that as the strength of the diffusion encoding increases, the performance gap between the referenceless method and the navigator‐based method diminishes.ConclusionReferenceless ghost correction effectively reduces Nyquist ghost in DT‐CMR data, showing promise for enhancing the accuracy and efficiency of measurements in clinical practice without the need for any additional reference scans.

Funder

British Heart Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3