Comparative chemometric modeling of fresh and dry cannabis inflorescences using FT‐NIR spectroscopy: Quantification and classification insights

Author:

Birenboim Matan12,Brikenstein Nimrod12,Kenigsbuch David3,Shimshoni Jakob A.1ORCID

Affiliation:

1. Department of Food Science Institute for Postharvest and Food Sciences, Agricultural Research Organization Rishon LeZion Israel

2. Department of Plant Science, The Robert H Smith Faculty of Agriculture, Food and Environment The Hebrew University Rehovot Israel

3. Department of Postharvest Science Institute for Postharvest and Food Sciences, Agricultural Research Organization Rishon LeZion Israel

Abstract

AbstractIntroductionCannabis sativa L. inflorescences are rich in cannabinoids and terpenes. Traditional chemical analysis methods for cannabinoids and terpenes, such as liquid and gas chromatography (using UV or MS detectors), are expensive and time‐consuming.ObjectivesThis study explores the use of Fourier transform near‐infrared (FT‐NIR) spectroscopy combined with chemometric approaches for classifying cannabis chemovars and predicting cannabinoid and terpene concentrations for the first time in freshly harvested (wet) cannabis inflorescence. The study also compares the performance of FT‐NIR spectroscopy on wet versus dry cannabis inflorescences.Materials and methodsSpectral data from 187 samples across seven cannabis chemovars were analyzed using partial least squares‐discriminant analysis (PLS‐DA) and partial least squares‐regression (PLS‐R) models.ResultsThe PLS‐DA models effectively classified chemovars and major classes using only two latent variables (LVs) with minimal overfitting risk, with sensitivity, specificity, and accuracy values approaching 1. Despite the high water content in wet cannabis inflorescence, the PLS‐R models demonstrated good to excellent predictive capabilities for nine cannabinoids and eight terpenes using FT‐NIR spectra for the first time, achieving cross‐validation and prediction R‐squared values greater than 0.7, ratio of performance to interquartile range (RPIQ) exceeding 2, and a RMSECV/RMSEC ratio below 1.24. However, the low‐cannabidiolic acid submodel and (−)‐Δ9‐trans‐tetrahydrocannabinol model showed poor predictive performance. Some cannabinoid and terpene prediction models in wet cannabis inflorescence exhibited lower predictive capabilities compared with previously published models for dry cannabis inflorescence.ConclusionsThese findings suggest that FT‐NIR spectroscopy can be a viable rapid on‐site analytical tool for growers during the inflorescence flowering stage.

Funder

Ministry of Agriculture and Rural Development

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3