Ca2+/CaM dependent protein kinase II (CaMKII)α and CaMKIIβ hub domains adopt distinct oligomeric states and stabilities

Author:

Özden Can12ORCID,MacManus Sara1,Adafia Ruth12,Samkutty Alfred1,Torres‐Ocampo Ana P.12,Garman Scott C.1,Stratton Margaret M.1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology University of Massachusetts Amherst Massachusetts USA

2. Molecular and Cellular Biology Graduate Program University of Massachusetts Amherst Massachusetts USA

Abstract

AbstractCa2+/calmodulin‐dependent protein kinase II (CaMKII) is a multidomain serine/threonine kinase that plays important roles in the brain, heart, muscle tissue, and eggs/sperm. The N‐terminal kinase and regulatory domain is connected by a flexible linker to the C‐terminal hub domain. The hub domain drives the oligomeric organization of CaMKII, assembling the kinase domains into high local concentration. Previous structural studies have shown multiple stoichiometries of the holoenzyme as well as the hub domain alone. Here, we report a comprehensive study of the hub domain stoichiometry and stability in solution. We solved two crystal structures of the CaMKIIβ hub domain that show 14‐mer (3.1 Å) and 16‐mer (3.4 Å) assemblies. Both crystal structures were determined from crystals grown in the same drop, which suggests that CaMKII oligomers with different stoichiometries likely coexist. To further interrogate hub stability, we employed mass photometry and temperature denaturation studies of CaMKIIβ and CaMKIIα hubs, which highlight major differences between these highly similar domains. We created a dimeric CaMKIIβ hub unit using rational mutagenesis, which is significantly less stable than the oligomer. Both hub domains populate an intermediate during unfolding. We found that multiple CaMKIIβ hub stoichiometries are present in solution and that larger oligomers are more stable. CaMKIIα had a narrower distribution of molecular weight and was distinctly more stable than CaMKIIβ.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3