Body mass estimates from postcranial skeletons and implication for positional behavior in Nacholapithecus kerioi: Evolutionary scenarios of modern apes

Author:

Kikuchi Yasuhiro1ORCID

Affiliation:

1. Division of Human Anatomy and Biological Anthropology, Department of Anatomy and Physiology, Faculty of Medicine Saga University Saga Japan

Abstract

AbstractThis study reported the body mass (BM) estimates of the Middle Miocene fossil hominoid Nacholapithecus kerioi from Africa. The average BM estimates from all forelimb and hindlimb skeletal elements was 22.7 kg, which is slightly higher than the previously reported estimate of ~22 kg. This study revealed that Nacholapithecus has a unique body proportion with an enlarged forelimb relative to a smaller hindlimb, suggesting an antipronograde posture/locomotion, which may be related to the long clavicle, robust ribs, and some hominoid‐like vertebral morphology. Because the BM of Nacholapithecus in this study was estimated to be below 30 kg, Nacholapithecus probably did not have relatively shorter and robust femora, which may result from other mechanical constraints, as seen in extant African hominoids. The BM estimate of Nacholapithecus suggests that full substantial modifications of the trunk and forelimb anatomy for risk avoidance and foraging efficiency, as seen in extant great apes, would not be expected in Nacholapithecus. Because larger monkeys are less arboreal (e.g., Mandrillus sphinx or Papio spp.), and the maximum BM among extant constant arboreal cercopithecoids is ~24 kg (male Nasalis larvatus), Nacholapithecus would be a constant arboreal primate. Although caution should be applied because of targeting only males in this study, arboreal quadrupedalism with upright posture and occasional antipronograde locomotion (e.g., climbing, chambering, descending, arm‐swing, and sway) using the powerful grasping capacity of the hand and foot may be assumed for positional behavior of Nacholapithecus.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Histology,Biotechnology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3