Microcomputed tomography visualization and quantitation of the pulmonary arterial microvascular tree in mouse models of chronic lung disease

Author:

Schneider Ben1,Kopf Katrina W.2,Mason Emma1,Dawson Maggie1,Coronado Escobar David3,Majka Susan M.14ORCID

Affiliation:

1. Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine National Jewish Health Denver Colorado USA

2. Biological Resource Center National Jewish Health Denver Colorado USA

3. Onimagin Technologies SCA Cordoba Spain

4. Gates Center for Regenerative Medicine and Stem Cell Biology University of Colorado Aurora Colorado USA

Abstract

AbstractPulmonary vascular dysfunction is characterized by remodeling and loss of microvessels in the lung and is a major manifestation of chronic lung diseases (CLD). In murine models of CLD, the small arterioles and capillaries are the first and most prevalent vessels that are affected by pruning and remodeling. Thus, visualization of the pulmonary arterial vasculature in three dimensions is essential to define pruning and remodeling both temporally and spatially and its role in the pathogenesis of CLD, aging, and tissue repair. To this end, we have developed a novel method to visualize and quantitate the murine pulmonary arterial circulation using microcomputed tomography (µCT) imaging. Using this perfusion technique, we can quantitate microvessels to approximately 6 µM in diameter. We hypothesize that bleomycin‐induced injury would have a significant impact on the arterial vascular structure. As proof of principle, we demonstrated that as a result of bleomycin‐induced injury at peak fibrosis, significant alterations in arterial vessel structure were visible in the three‐dimensional models as well as quantification. Thus, we have successfully developed a perfusion methodology and complementary analysis techniques, which allows for the reconstruction, visualization, and quantitation of the mouse pulmonary arterial microvasculature in three‐dimensions. This tool will further support the examination and understanding of angiogenesis during the development of CLD as well as repair following injury.

Funder

National Heart, Lung, and Blood Institute

Publisher

Wiley

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3