Affiliation:
1. Department of Emergency Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
2. Malone Center for Engineering in Healthcare Johns Hopkins University Whiting School of Engineering Baltimore Maryland USA
3. One Health Trust Washington District of Columbia USA
4. Department of Pediatrics Johns Hopkins University School of Medicine Baltimore Maryland USA
5. Department of Microbiology and Immunology Johns Hopkins University School of Medicine Baltimore Maryland USA
Abstract
AbstractObjectiveMillions of Americans are infected by influenza annually. A minority seek care in the emergency department (ED) and, of those, only a limited number experience severe disease or death. ED clinicians must distinguish those at risk for deterioration from those who can be safely discharged.MethodsWe developed random forest machine learning (ML) models to estimate needs for critical care within 24 h and inpatient care within 72 h in ED patients with influenza. Predictor data were limited to those recorded prior to ED disposition decision: demographics, ED complaint, medical problems, vital signs, supplemental oxygen use, and laboratory results. Our study population was comprised of adults diagnosed with influenza at one of five EDs in our university health system between January 1, 2017 and May 18, 2022; visits were divided into two cohorts to facilitate model development and validation. Prediction performance was assessed by the area under the receiver operating characteristic curve (AUC) and the Brier score.ResultsAmong 8032 patients with laboratory‐confirmed influenza, incidence of critical care needs was 6.3% and incidence of inpatient care needs was 19.6%. The most common reasons for ED visit were symptoms of respiratory tract infection, fever, and shortness of breath. Model AUCs were 0.89 (95% CI 0.86–0.93) for prediction of critical care and 0.90 (95% CI 0.88–0.93) for inpatient care needs; Brier scores were 0.026 and 0.042, respectively. Importantpredictors included shortness of breath, increasing respiratory rate, and a high number of comorbid diseases. ConclusionsML methods can be used to accurately predict clinical deterioration in ED patients with influenza and have potential to support ED disposition decision‐making.
Funder
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
Reference46 articles.
1. CDC.Burden of Influenza. Disease Burden of Influenza. Published January 10 2020. Accessed February 15 2020.https://www.cdc.gov/flu/about/burden/index.html
2. Centers for Disease Control and Prevention.National Ambulatory Medical Care Survey: 2016 National Summary Tables. Published online January 25 2020. Accessed January 25 2020. Published 2016.https://www.cdc.gov/nchs/data/ahcd/namcs_summary/2016_namcs_web_tables.pdf
3. Latest data reveal the ED's role as hospital admission gatekeeper;Augustine J;ACEP Now,2019