BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis

Author:

Wang Yi1,Chen Yahui23,Wu Jinfeng2,Shi Xiangguang2ORCID

Affiliation:

1. Department of Plastic and Burns Surgery The Second Hospital of Shandong University Jinan Shandong China

2. Department of Dermatology, Huashan Hospital Fudan University Shanghai China

3. Human Phenome Institute Fudan University Shanghai China

Abstract

ABSTRACTKeloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high‐expressing subtype of fibroblast by reanalyzing a public single‐cell RNA‐sequence data set of keloid. The number of BMP1‐positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL‐1β secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF‐β pathways, including p‐p38 and p‐ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid‐bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF‐β/p38 MAPK, and TGF‐β/ERK pathways. BMP1‐lowing strategies may appear as a potential new therapeutic target for keloid.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3