Preparation of doped PbO2 electrode and its application for aromatic aldehydes

Author:

Shi Yuanmei1,Liu Rihong1,Xin Huifen1,Jin Yan1ORCID,Feng Baicheng1

Affiliation:

1. College of Chemical Engineering Qingdao University of Science and Technology Qingdao China

Abstract

AbstractBACKGROUNDThis work prepared doped PbO2 electrodes with rare earth oxides, including SnO2–Sb2O5/Ce–PbO2 and SnO2–Sb2O5/Nd–PbO2. We investigated the effect of rare earth oxide dopants on the properties of the PbO2 electrodes, and the application of the electrodes to the synthesis of aromatic aldehydes.RESULTSScanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and X‐ray photoelectron spectroscopy were used to characterize the surface morphology, crystal structure, elemental content and states of the modified electrodes. The electrodes doped with Ce and Nd have a finer surface, resulting in a larger contact area and increased catalytic oxidation capacity. Cyclic voltammetry and linear sweep voltammetry were also utilized to study the electrochemical response of the modified electrodes. The current efficiency of the prepared redox mediator reached 93.2% through SnO2–Sb2O5/Nd–PbO2 electrode, which was higher than that of other electrodes. Furthermore, the electrode efficiency was basically stable after 10 cycles, which still could reach 88.7%.CONCLUSIONIt was found that Nd‐doped electrode could enhance indirect anodic oxidation through comparing the effect of SnO2–Sb2O5/PbO2, SnO2–Sb2O5/Ce–PbO2 and SnO2–Sb2O5/Nd–PbO2 electrodes in the application of the synthesis of aromatic aldehydes. © 2023 Society of Chemical Industry (SCI).

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3