Distributional imputation for the analysis of censored recurrent events

Author:

Fairfax Sarah R.1ORCID,Yang Shu1ORCID

Affiliation:

1. Department of Statistics North Carolina State University Raleigh North Carolina USA

Abstract

Longitudinal clinical trials for which recurrent events endpoints are of interest are commonly subject to missing event data. Primary analyses in such trials are often performed assuming events are missing at random, and sensitivity analyses are necessary to assess robustness of primary analysis conclusions to missing data assumptions. Control‐based imputation is an attractive approach in superiority trials for imposing conservative assumptions on how data may be missing not at random. A popular approach to implementing control‐based assumptions for recurrent events is multiple imputation (MI), but Rubin's variance estimator is often biased for the true sampling variability of the point estimator in the control‐based setting. We propose distributional imputation (DI) with corresponding wild bootstrap variance estimation procedure for control‐based sensitivity analyses of recurrent events. We apply control‐based DI to a type I diabetes trial. In the application and simulation studies, DI produced more reasonable standard error estimates than MI with Rubin's combining rules in control‐based sensitivity analyses of recurrent events.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3