Statistical considerations in model‐based dose finding for binary responses under model uncertainty

Author:

Yan Zhiwu1ORCID,Yang Min2ORCID

Affiliation:

1. Biostatistics Department 89bio, Inc. San Francisco California USA

2. Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Chicago Illinois

Abstract

The statistical methodology for model‐based dose finding under model uncertainty has attracted increasing attention in recent years. While the underlying principles are simple and easy to understand, developing and implementing an efficient approach for binary responses can be a formidable task in practice. Motivated by the statistical challenges encountered in a phase II dose finding study, we explore several key design and analysis issues related to the hybrid testing‐modeling approaches for binary responses. The issues include candidate model selection and specifications, optimal design and efficient sample size allocations, and, notably, the methods for dose‐response testing and estimation. Specifically, we consider a class of generalized linear models suited for the candidate set and establish D‐optimal designs for these models. Additionally, we propose using permutation‐based tests for dose‐response testing to avoid asymptotic normality assumptions typically required for contrast‐based tests. We perform trial simulations to enhance our understanding of these issues.

Publisher

Wiley

Reference19 articles.

1. Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies

2. Model-based dose finding under model uncertainty using general parametric models

3. EMA.Qualification opinion of MCP‐Mod as an efficient statistical methodology for model‐based design and analysis of phase‐II dose finding studies under model uncertainty.https://www.ema.europa.eu/en/human‐regulatory‐overview/research‐and‐development/scientific‐advice‐and‐protocol‐assistance/opinions‐and‐letters‐support‐qualification‐novel‐methodologies‐medicine‐development2014.

4. FDA.Drug Development Tools: Fit‐for‐Purpose Initiative on MCP‐Mod.https://www.fda.gov/drugs/development‐approval‐process‐drugs/drug‐development‐tools‐fit‐purpose‐initiative2016.

5. Optimal Designs for Dose-Finding Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3