Revisiting deep neural network test coverage from the test effectiveness perspective

Author:

Yan Ming1ORCID,Chen Junjie1,Cao Xuejie1,Wu Zhuo2,Kang Yuning1,Wang Zan12

Affiliation:

1. College of Intelligence and Computing Tianjin University Tianjin 300350 China

2. School of New Media and Communication Tianjin University Tianjin 300072 China

Abstract

AbstractMany test coverage metrics have been proposed to measure the deep neural network (DNN) testing effectiveness, including structural coverage and nonstructural coverage. These test coverage metrics are proposed based on the fundamental assumption: They are correlated with test effectiveness. However, the fundamental assumption is still not validated sufficiently and reasonably, which brings question on the usefulness of DNN test coverage. This paper conducted a revisiting study on the existing DNN test coverage from the test effectiveness perspective, to effectively validate the fundamental assumption. Here, we carefully considered the diversity of subjects, three test effectiveness criteria, and both typical and state‐of‐the‐art test coverage metrics. Different from all the existing studies that deliver negative conclusions on the usefulness of existing DNN test coverage, we identified some positive conclusions on their usefulness from the test effectiveness perspective. In particular, we found the complementary relationship between structural and nonstructural coverage and identified the practical usage scenarios and promising research directions for these existing test coverage metrics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Test Input Selection and Prioritization for Deep Neural Networks;2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR);2024-03-16

2. Code Difference Guided Adversarial Example Generation for Deep Code Models;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3