Study of the radiofrequency‐induced heating inside the human head with dental implants at 7 T

Author:

Duan Song1ORCID,Wu Xiuxiu1,Shi Juntian1,Li Wenhui2,Dong Qingshan3,Xin Sherman Xuegang4ORCID

Affiliation:

1. Department of Radiation Oncology, Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou Guangdong China

2. Department of Dentistry Air Force Hospital of Southern Theater Command of PLA Guangzhou Guangdong China

3. Department of Stomatology General Hospital of Central Theater Command of PLA WuHan China

4. Biophysics and Medical Imaging Lab, School of Medicine South China University of Technology Guangzhou Guangdong China

Abstract

AbstractConductive dental implants are commonly used in restorative therapy to replace missing teeth in patients. Ensuring the radiofrequency (RF) safety of these patients is crucial when performing 7 T magnetic resonance scans of their heads. This study aimed to investigate RF‐induced heating inside the human head with dental implants at 7 T. Dental implants and their attachments were fabricated and integrated into an anatomical head model, creating different measurement configurations (MCs). Numerical simulations were conducted using a 7 T transmit coil loaded with the anatomical head model, both with and without dental implants. The maximum temperatures inside the head for various MCs were computed using the maximum permissible input powers (MPIPs) obtained without dental implants and compared with published limits. Additionally, the MPIPs with dental implants were calculated for scenarios where the temperature limits were exceeded. The maximum temperatures observed inside the head ranged from 38.4°C to 39.6°C. The MPIPs in the presence of dental implants were 81.9%–97.3% of the MPIPs in the absence of dental implants for scenarios that exceeded the regulatory limit. RF‐induced heating effect of the dental implants was not significant. The safe scanning condition in terms of RF exposure was achievable for patients with dental implants. For patients with conductive dental implants of unknown configuration, it is recommended to reduce the input power by 18.1% of MPIP without dental implants to ensure RF safety.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3