Learning beyond books: A hybrid model to learn real‐world problems

Author:

Anwar Zeeshan1ORCID,Afzal Hammad1,Iltaf Naima1

Affiliation:

1. Department of Computer Software Engineering National University of Sciences and Technology Islamabad Pakistan

Abstract

AbstractThere are several initiatives underway to improve the learning of software developers. These attempts include the integration of GitHub into software engineering classes, the creation of learning management systems, gamification approaches, and collaborative learning platforms. These initiatives have demonstrated promise in boosting students' collaborative growth and cooperation abilities, emphasizing their potential influence on improving learning experiences in practical areas. Books, on the other hand, remain basic in education, but their physical size limits their ability to explore all practical elements of a topic in depth. This limitation requires more research and application of theoretical information in real‐world circumstances. In this work, we address the issue of limited space in traditional books that frequently prevents complete presentation of practical elements of a topic. To address this issue, we propose an application that improves the reading experience and accelerates the learning process. To anticipate themes, we use a combination of latent Dirichlet allocation (LDA) algorithms and a generative pre‐trained transformer. First, utilizing LDA to find potential topic keywords inside the text and then leveraging generative pretrained transformer to predict topic names based on the LDA produced keywords. In addition, a query builder module produces and executes queries depending on the current page's topic, obtaining real‐world issues from Stack Overflow. The system classifies results by query‐title similarity, question‐answer ranking, and content quality before displaying them to users. This bridges the gap between theoretical knowledge and practical application. We illustrate the usefulness of suggested tool using simulations, comparison with existing tools and user studies. The majority of users provide favorable comments and find it interesting and helpful for improving the learning process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3