ChatGPT versus a customized AI chatbot (Anatbuddy) for anatomy education: A comparative pilot study

Author:

Arun Gautham12,Perumal Vivek1,Urias Francis Paul John Bato2,Ler Yan En2,Tan Bryan Wen Tao2,Vallabhajosyula Ranganath1,Tan Emmanuel1,Ng Olivia1ORCID,Ng Kian Bee1,Mogali Sreenivasulu Reddy1ORCID

Affiliation:

1. Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore Singapore

2. Singapore Polytechnic Singapore Singapore

Abstract

AbstractLarge Language Models (LLMs) have the potential to improve education by personalizing learning. However, ChatGPT‐generated content has been criticized for sometimes producing false, biased, and/or hallucinatory information. To evaluate AI's ability to return clear and accurate anatomy information, this study generated a custom interactive and intelligent chatbot (Anatbuddy) through an Open AI Application Programming Interface (API) that enables seamless AI‐driven interactions within a secured cloud infrastructure. Anatbuddy was programmed through a Retrieval Augmented Generation (RAG) method to provide context‐aware responses to user queries based on a predetermined knowledge base. To compare their outputs, various queries (i.e., prompts) on thoracic anatomy (n = 18) were fed into Anatbuddy and ChatGPT 3.5. A panel comprising three experienced anatomists evaluated both tools' responses for factual accuracy, relevance, completeness, coherence, and fluency on a 5‐point Likert scale. These ratings were reviewed by a third party blinded to the study, who revised and finalized scores as needed. Anatbuddy's factual accuracy (mean ± SD = 4.78/5.00 ± 0.43; median = 5.00) was rated significantly higher (U = 84, p = 0.01) than ChatGPT's accuracy (4.11 ± 0.83; median = 4.00). No statistically significant differences were detected between the chatbots for the other variables. Given ChatGPT's current content knowledge limitations, we strongly recommend the anatomy profession develop a custom AI chatbot for anatomy education utilizing a carefully curated knowledge base to ensure accuracy. Further research is needed to determine students' acceptance of custom chatbots for anatomy education and their influence on learning experiences and outcomes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3