Inhibition behavior and heat transfer of flame spread over liquid fuel with the influence of a step obstacle in the gas phase

Author:

Yang Shenlin1234,Hu Peiyuan14,Li Ranran14,Li Manhou1234ORCID,Xie Quanmin23,Li Jingchuan1

Affiliation:

1. School of Civil Engineering Hefei University of Technology Hefei China

2. State Key Laboratory of Precision Blasting Jianghan University Wuhan China

3. Hubei (Wuhan) Institute of Explosion and Blasting Technology Jianghan University Wuhan China

4. Anhui International Joint Research Center on Hydrogen Safety Hefei China

Abstract

AbstractThe transportation of oil is an important aspect of chemical process safety. In the accidental leakage of oil and related products, the flame spread occurs occasionally when the liquid fuel is activated by a pilot flame. In the potential application of fire prevention, a step obstacle placed above the oil ditch may effectively hinder the flame spread. The effectiveness of the usage of a step obstacle depends on the size of the obstacle and the heat exchange mechanism. Therefore, the investigation of inhibition behavior and heat transfer of liquid flame spread with gas step obstacle is performed. The hot fluids flow inside the channel to carry out the convection heat to the initial cold oils on the opposite of the gas step obstacle. The flame configuration is blocked behind the step obstacle. The flame spread behaviors including flame morphology, inhibition time, and air entrainment are characterized and analyzed. The heat flows of flame radiation and liquid‐phase convection are theoretically calculated, and the primary heat transfer mechanism is determined. This work is helpful for the development of fire safety technology and the establishment of standard specifications for oil transportation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Safety, Risk, Reliability and Quality,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3