Study of ethanol vapor explosion and prediction based on chemical kinetics under high temperature and pressure

Author:

Qi Yingquan1ORCID,Ding Li2,Pan Yong1ORCID,Liu Jingran1,Wang Supan1

Affiliation:

1. College of Safety Science and Engineering Nanjing Tech University Nanjing China

2. School of Automotive & Rail Transit Nanjing Institute of Technology Nanjing China

Abstract

AbstractThe study of the explosion parameters of ethanol–air mixture at high pressure and temperature is essential for the safe production of ethanol. However, the explosion characteristics of ethanol vapor at various pressures and temperatures are limited. The mechanism at the flammability limits of ethanol has not been clarified, and the corresponding prediction model is also lacking. In this study, chemical kinetics and machine learning are used to study the mechanism of ethanol explosion and build predictive models, respectively. Our findings show that an increase in the initial pressure has a more pronounced influence on the explosion pressure (Pex) and pressure rise rate (dp/dt) than an increase of temperature. The variation trend of the upper flammability limit (UFL) of ethanol is related to the different effects of temperature and pressure on OH radicals. H + O2<>OH + O and HO2 + CH3<>OH + CH3O had the greatest effect on the generation of OH radicals. The quantitative relationship between the H, O, and OH radicals and UFL was constructed by machine learning, providing a new research perspective for the prediction of the UFL of an inflammable fuel under different pressures and temperatures. The results of the study will provide theoretical and practical guidance for the prevention and control of explosions in the ethanol production process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Safety, Risk, Reliability and Quality,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3