A genetic approach for the 2‐edge‐connected minimum branch vertices problem

Author:

Carrabs Francesco1ORCID,Cerulli Raffaele1ORCID,Laureana Federica1ORCID,Serra Domenico1ORCID,Sorgente Carmine1ORCID

Affiliation:

1. Department of Mathematics University of Salerno Fisciano Salerno Italy

Abstract

AbstractThis article addresses the 2‐edge‐connected minimum branch vertices problem, a variant of the minimum branch vertices problem in which the spanning subgraph is required to be 2‐edge‐connected for survivability reasons. The problem has been recently introduced and finds application in optical networks design scenarios, where branch vertices are associated to switch devices that allow to split the entering light signals and send them to several adjacent vertices. An exact approach to the problem has been proposed in the literature. In this paper, we formally prove its NP‐completeness and propose a genetic algorithm, which exploits some literature‐provided procedures for efficiently checking and restoring solutions feasibility, and makes use of novel ad‐hoc designed operators aiming to improve their values, reducing the number of branch vertices. The computational tests show that, on the benchmark instances, the genetic algorithm very often finds the optimal solution. Moreover, in order to further investigate the effectiveness and the performance of our algorithm, we generated a new set of random instances where the optimal solution is known a priori.

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3