Development of PVA/sodium alginate incorporated with histidine capped silver nanoparticles for food packaging application

Author:

Suganthi Sanjeevamuthu1ORCID,Vignesh Shanmugam1,Al‐Ansari Mysoon M.2,Al‐Humaid Latifah A.2,Oh Tae Hwan1,Raj Vairamuthu3ORCID

Affiliation:

1. School of Chemical Engineering Yeungnam University Gyeongsan Republic of Korea

2. Department of Botany and Microbiology, College of Science King Saud University Riyadh Saudi Arabia

3. Advanced Materials Research Laboratory, Department of Chemistry Periyar University Salem Tamil Nadu India

Abstract

AbstractPackaging is a growing field of interest, and the use of nanotechnology is accelerating its expansion. The study reports the fabrication of poly(vinyl alcohol) (PVA) blended sodium alginate (SA) and incorporated with different ratios of histidine‐capped silver (H‐AgNPs) nanoparticle films. Fabrication of PVA/SA/H‐AgNPs films was confirmed with the surface plasmon resonance (SPR) band denoted AgNPs presence between 400 and 420 nm measured by UV–Vis absorption spectroscopy. The characteristics of the polymeric biocomposite films were significantly altered by different ratios of AgNPs. The interaction of PVA/SA and PVA/SA with AgNPs was analyzed by using FT‐IR analysis. The degree of crystallinity was increased upon increasing the concentration of H‐AgNPs as confirmed by XRD measurements. The homogeneity of dispersion and surface morphology of samples were studied by FESEM. The addition of H‐AgNPs in the polymeric film increased the surface roughness of the polymeric film confirmed by AFM analysis. The contact angle of the PVA/SA blend matrix was observed to be 46.97°, and with the incorporation of AgNPs ranging from 3%, 5%, and 7% to the blend matrix, the contact angle of the nanocomposite films in increasing hydrophobic order was 60.53°, 83.57°, and 96.20°, respectively. The incorporation of AgNPs also demonstrates that the PVA/SA blend matrix has desirable thermal stability. The improved qualities were due to H bonding between PVA, SA, and H‐AgNPs, in which molecules contact strongly with one another. Furthermore, the PVA/SA/H‐AgNPs showed significant antibacterial activity against both Gram‐positive (G+) strains (Staphylococcus aureus) and Gram‐negative (G) strains (Escherichia coli) bacterial infections. The findings of this research indicate that the PVA/SA/H‐AgNPs fabricated composite films considerable for applications in food packaging.

Funder

King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3