Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6

Author:

Zhang Yan1ORCID,Zhu Zhengru2,Cao Yang1,Xiong Zhenyu1,Duan Yu1,Lin Jie1,Zhang Xuebin1,Jiang Mengyuan1,Liu Yue1,Man Wanrong1,Jia Tengfei1,Feng Jiaxu1,Chen Yanyan1,Li Congye1,Guo Baolin1,Sun Dongdong1ORCID

Affiliation:

1. Department of Cardiology Xijing Hospital, Fourth Military Medical University Xi'an China

2. Department of Otolaryngology Xijing Hospital, Fourth Military Medical University Xi'an China

Abstract

AbstractBackgroundAs the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs).MethodsApoeKO mice were utilized as a model for atherosclerosis. Endothelium‐specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC‐MS/MS), co‐immunoprecipitation (Co‐IP) assays, and molecular docking.ResultsEvidence from gain‐of‐function and loss‐of‐function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC‐MS/MS, Co‐IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor‐associated factor 6 (TRAF6). This leads to the suppression of K63‐linked TRAF6 ubiquitination and the promotion of K48‐linked TRAF6 ubiquitination, inhibiting the activation of NF‐κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout‐evoked exacerbation of EC pyroptosis in vivo and vitro.ConclusionsThese findings establish a critical functional connection between Rnd3 and the TRAF6/NF‐κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3