Spatial and temporal resource partitioning in a mixed‐species colony of avian echolocators

Author:

Sadanandan Keren R.1ORCID,Tan Hui Zhen2ORCID,Lim Hong Yao2,Tan Yi Gain3ORCID,Lee Grace3,Chan Lena4,Pei Yifan5ORCID,Rheindt Frank E.2,Baldwin Maude W.1ORCID

Affiliation:

1. Evolution of Sensory Systems Research Group Max Planck Institute for Biological Intelligence Seewiesen Germany

2. Department of Biological Sciences National University of Singapore Singapore Singapore

3. Sentosa Development Corporation Singapore Singapore

4. International Biodiversity Conservation Division National Parks Board of Singapore Singapore Singapore

5. Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Biological Intelligence Seewiesen Germany

Abstract

AbstractResource partitioning may facilitate the coexistence of sympatric species with similar ecological requirements. Here, we study a colony of unusual echolocating birds called swiftlets, which nest underground on an island off the coast of Singapore. The colony comprises two congeneric swiftlet species, black‐nest swiftlets (Aerodramus maximus) and edible‐nest swiftlets (A. fuciphagus), nesting at high densities and in close proximity. Bioacoustic recordings and monitoring of nesting biology at the site across multiple seasons revealed significant differences in echolocation calls as well as survival rates between the species, with the larger black‐nest swiftlet nesting at locations with the highest fledging rates. We also observe an additional off‐season breeding peak by the smaller species, the edible‐nest swiftlet. Unexpectedly, off‐season egg‐hatching rates were significantly higher compared with the rates during the shared breeding season (mean difference = 14%). Our study on the breeding biology of these echolocating cave‐dwelling birds provides an example of spatial and temporal strategies that animals employ to partition resources within a confined habitat.

Funder

Deutscher Akademischer Austauschdienst

Wildlife Reserves Singapore Conservation Fund

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3