Role of miR‐15a‐5p and miR‐199a‐3p in the inflammatory pathway regulated by NF‐κB in experimental and human atherosclerosis

Author:

González‐López Paula1,Álvarez‐Villarreal Marta1,Ruiz‐Simón Rubén1,López‐Pastor Andrea R.1,de Ceniga Melina Vega23,Esparza Leticia23,Martín‐Ventura José L.4,Escribano Óscar1ORCID,Gómez‐Hernández Almudena1ORCID

Affiliation:

1. Hepatic and Vascular Diseases Laboratory. Biochemistry and Molecular Biology Department, School of Pharmacy Complutense University of Madrid Madrid Spain

2. Department of Angiology and Vascular Surgery Hospital of Galdakao‐Usansolo Galdakao Bizkaia Spain

3. Biocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain

4. IIS‐Fundation Jimenez‐Diaz Autonoma University of Madrid and CIBERCV Madrid Spain

Abstract

AbstractBackgroundCardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non‐coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs.MethodsBy RT‐qPCR, we analysed miR‐9‐5p, miR‐15a‐5p, miR‐16‐5p and miR‐199a‐3p levels in aorta from apolipoprotein knockout (ApoE−/−) mice, an experimental model of hyperlipidemia‐induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs.ResultsOur results show that miR‐15a‐5p and miR‐199a‐3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF‐κB), such as IKKα, IKKβ and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR‐15a‐5p or miR‐199a‐3p decreased IKKα, IKKβ and p65 protein levels as well as NF‐κB activation. On the other hand, miR‐15a‐5p and miR‐199a‐3p overexpression reduced ox‐LDL uptake and the inflammation regulated by NF‐κB in VSMCs. Moreover, although miR‐15a‐5p and miR‐199a‐3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR‐15a‐5p, the area under the curve was 0.8951 with a p value of .0028.ConclusionsOur results suggest that the decrease of miR‐199a‐3p and miR‐15a‐5p in vascular samples from human and experimental atherosclerosis could be involved in the NF‐κB activation pathway, as well as in ox‐LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR‐15a‐5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3