c‐FOS is an integral component of the IKZF1 transactivator complex and mediates lenalidomide resistance in multiple myeloma

Author:

Osada Naoki1,Kikuchi Jiro1,Iha Hidekatsu2,Yasui Hiroshi34,Ikeda Sho5,Takahashi Naoto5,Furukawa Yusuke16ORCID

Affiliation:

1. Division of Stem Cell Regulation Center for Molecular Medicine Jichi Medical University Tochigi Japan

2. Division of Pathophysiology The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID) Oita University Oita Japan

3. Division of Hematology and Oncology, Department of Internal Medicine St. Marianna University School of Medicine Kanagawa Japan

4. Project Division of Innovative Diagnostics Technology Platform, The Institute of Medical Science The University of Tokyo Tokyo Japan

5. Department of Hematology Nephrology and Rheumatology Akita University Graduate School of Medicine Akita Japan

6. Center for Medical Education Teikyo University of Science Tokyo Japan

Abstract

AbstractBackgroundThe immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin‐dependent degradation of IKZF1 and subsequent down‐regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co‐factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation.MethodsTo identify unknown components of the IKZF1 complex, we analyzed the genome‐wide binding of IKZF1 in MM cells using chromatin immunoprecipitation‐sequencing (ChIP‐seq) and screened for the co‐occupancy of IKZF1 with other DNA‐binding factors on the myeloma genome using the ChIP‐Atlas platform.ResultsWe found that c‐FOS, a member of the activator protein‐1 (AP‐1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome‐wide screening revealed the co‐occupancy of c‐FOS with IKZF1 on the regulatory regions of IKZF1‐target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre‐B cells or mature T‐lymphocytes. c‐FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein‐protein interactions. The complex also includes c‐JUN and IKZF3 but not IRF4. Treatment of MM cells with short‐hairpin RNA against FOS or a selective AP‐1 inhibitor significantly enhanced the anti‐MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP‐1 inhibitor mitigated the lenalidomide resistance of MM cells.ConclusionsC‐FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co‐factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3