Deep recognition of rice disease images: how many training samples do we really need?

Author:

Zhou Huiru1,Huang Dong2,Wu Bo Ming3ORCID

Affiliation:

1. College of Plant Protection South China Agricultural University Guangzhou China

2. College of Mathematics and Informatics South China Agricultural University Guangzhou China

3. College of Plant Protection China Agricultural University Beijing China

Abstract

AbstractBACKGROUNDWith the rapid development of deep learning, the recognition of rice disease images using deep neural networks has become a hot research topic. However, most previous studies only focus on the modification of deep learning models, while lacking research to systematically and scientifically explore the impact of different data sizes on the image recognition task for rice diseases. In this study, a functional model was developed to predict the relationship between the size of dataset and the accuracy rate of model recognition.RESULTSTraining VGG16 deep learning models with different quantities of images of rice blast‐diseased leaves and healthy rice leaves, it was found that the test accuracy of the resulting models could be well fitted with an exponential model (A = 0.9965 − e(−0.0603×I50−1.6693)). Experimental results showed that with an increase of image quantity, the recognition accuracy of deep learning models would show a rapid increase at first. Yet when the image quantity increases beyond a certain threshold, the accuracy of image classification would not improve much, and the marginal benefit would be reduced. This trend remained similar when the composition of the dataset was changed, no matter whether (i) the disease class was changed, (ii) the number of classes was increased or (iii) the image data were augmented.CONCLUSIONSThis study provided a scientific basis for the impact of data size on the accuracy of rice disease image recognition, and may also serve as a reference for researchers for database construction. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3