Towards bespoke optimizations of energy efficiency in HPC environments

Author:

Tracey Robert12,Elisseev Vadim123ORCID,Smyrnakis Michalis4,Hoang Lan1,Fellows Mark4,Ackers Michael4,Laughton Andrew4,Hill Stephen5,Folkes Phillip5,Whittle John5

Affiliation:

1. Daresbury Laboratory IBM Research Warrington UK

2. Wrexham University Wrexham UK

3. Department of Physics, Atomic and Laser Physics sub‐Department, Clarendon Laboratory University of Oxford Oxford UK

4. Daresbury Laboratory, The Hartree Centre STFC Warrington UK

5. Daresbury Laboratory STFC Warrington UK

Abstract

AbstractWe present bespoke energy efficiency optimizations in high performance computing (HPC) environments using holistic approach to data collection, analysis and proactive management of resources and workloads. Our solution has three major components: (i) platform for collecting, storing and processing data from multiple sources across hardware and software stacks, (ii) collections of regression machine learning (ML) algorithms for making workloads classifications and energy usage predictions, (iii) agent‐based decision‐making framework for delivering control decisions to middle‐ware and infrastructure thus supporting real time or near real energy efficiency optimizations. We will provide some concrete examples of using our proposed approach in HPC environment.

Funder

International Business Machines Corporation

Science and Technology Facilities Council

Publisher

Wiley

Subject

General Medicine

Reference95 articles.

1. How to stop data centres from gobbling up the world’s electricity

2. ComissionE.Energy‐efficient Cloud Computing Technologies and Policies for an Eco‐friendly Cloud Market.https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=713302022.

3. IEA P.Global data centre energy demand by end use.https://www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-end-use2020.

4. Institute U.Uptime Institute Global Data Center Survey.2022https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022

5. MaloneC BeladyC.Metrics to characterize data center & IT equipment energy use. 35.2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3