The futile creatine cycle and the synthesis of fatty acids in inguinal white adipose tissue from growing rats, submitted to a hypoprotein‐hyperglycidic diet for 15 days

Author:

Allebrandt Neto Edgar Willibaldo1ORCID,Rondon e Silva Jadyellen1ORCID,Santos Stephanie Figueiredo1ORCID,de França Lemes Suélem Aparecida1ORCID,Kawashita Nair Honda1,Peron Pereira Mayara1ORCID

Affiliation:

1. Department of Chemistry Federal University of Mato Grosso Cuiabá Mato Grosso Brazil

Abstract

AbstractThe low‐protein, high‐carbohydrate (LPHC) diet administered to growing rats soon after weaning, for 15 days, promoted an increase in energy expenditure by uncoupling protein 1 (UCP1) in interscapular brown adipose tissue, and also due to the occurrence of the browning process in the perirenal white adipose tissue (periWAT). However, we believe that inguinal white adipose tissue (ingWAT) may also contribute to energy expenditure through other mechanisms. Therefore, the aim of this work is to investigate the presence of the futile creatine cycle, and the origin of lipids in ingWAT, since that tissue showed an increase in the lipids content in rats submitted to the LPHC diet for 15 days. We observed increases in creatine kinase and alkaline phosphatase activity in ingWAT, of the LPHC animals. The mitochondrial Nicotinamide adenine dinucleotide reduced/nicotinamide adenine dinucleotide oxidized ratio is lower in ingWAT of LPHC animals. In the LPHC animals treated with β‐guanidinopropionic acid, the extracellular uptake of creatine in ingWAT was lower, as was the rectal temperature. Regarding lipid metabolism, we observed that in ingWAT, lipolysis in vitro when stimulated with noradrenaline is lower, and there were no changes in baseline levels. In addition, increases in the activity of enzymes were also observed: malic, glucose‐6‐phosphate dehydrogenase, and ATP‐citrate lyase, in addition to an increase in the PPARγ content. The results show the occurrence of the futile creatine cycle in ingWAT, and that the increase in the relative mass may be due to an increase in de novo fatty acid synthesis.

Publisher

Wiley

Subject

Cell Biology,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3