Affiliation:
1. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Beijing Key Laboratory of Advanced Manufacturing Technology College of Mechanical & Energy Engineering, Beijing University of Technology Beijing People's Republic of China
Abstract
AbstractThis work is focused on performance computation of high speed rotor bearing system with partial composite texture. Since its viscosity at varying speeds affects working performance in different partial composite texture, therefore at design and development stage, it is necessary to know the composite texture and thermal effect acting on rotor‐bearing system that causes variation of performance. The effects of partial composite texture size and position on the performance of the bearing are studied. After the optimal structural parameters are determined, the effects of the partial composite texture and fluid thermos structure coupling on the bearing capacity, stiffness, and friction coefficient of the oil film are analysed. The results show that after considering the influence of thermal effect, the performance enhancement of composite texture bearing is better than that of smooth bearing. Considering the temperature effect, the bearing capacity of the composite textured bearing is increased by 51.4% compared with that of the smooth bearing, and the friction coefficient is reduced to 22.4%, which is better than the value without considering the temperature effect, the accuracy of the results is verified by experiments. This study provides a theoretical basis for the design of hydrostatic bearing and improving its performance.
Funder
National Natural Science Foundation of China