Evaluation of multi‐user multiple‐input multiple‐output digital beamforming algorithms in B5G/6G low Earth orbit satellite systems

Author:

Dakkak M. Rabih1ORCID,Riviello Daniel Gaetano1ORCID,Guidotti Alessandro2ORCID,Vanelli‐Coralli Alessandro1ORCID

Affiliation:

1. Department of Electrical, Electronic, and Information Engineering (DEI) University of Bologna Bologna Italy

2. National Inter‐University Consortium for Telecommunications (CNIT) Bologna Italy

Abstract

SummarySatellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever‐increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co‐channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed‐form solution, we propose a beamforming algorithm based on maximizing the users' signal‐to‐leakage‐and‐noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi‐beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per‐user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to‐leakage‐plus‐noise ratio beamforming technique is able to outperform both minimum mean square error and multi‐beam schemes in the presented satellite communication scenario.

Funder

Horizon 2020 Framework Programme

Horizon 2020

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Media Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Communications and Localization for Massive MIMO LEO Satellite Systems;IEEE Transactions on Wireless Communications;2024-09

2. 6G mmWave Security: Next-Gen Protection with Federated Learning;ICC 2024 - IEEE International Conference on Communications;2024-06-09

3. Federated Beamforming with Subarrayed Planar Arrays for B5G/6G LEO Non-Terrestrial Networks;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

4. Investigating Multi-User Spectrum Allocation Algorithms in 6G Networks;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3