A kernel‐based method for solving the time‐fractional diffusion equation

Author:

Fardi Mojtaba1ORCID

Affiliation:

1. Department of Applied Mathematics, Faculty of Mathematical Science Shahrekord University Shahrekord Iran

Abstract

AbstractIn this paper, we focus on the development and study of a numerical method based on the idea of kernel‐based approximation and finite difference discretization to obtain the solution for the time‐fractional diffusion equation. Using the theory of reproducing kernel, reproducing kernel functions with a polynomial form will be established in polynomial reproducing kernel spaces spanned by the Chebychev basis polynomials. In the numerical method, first the time‐fractional derivative term in the aforementioned equation is approximated by using the finite difference scheme. Then, by the help of collocation method based on reproducing kernel approximation, we will illustrate how to derive the numerical solution in polynomial reproducing kernel space. Finally, to support the accuracy and efficiency of the numerical method, we provide several numerical examples. In numerical experiments, the quality of approximation is calculated by absolute error and discrete error norms.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3