Alfalfa–organic amendments impact soil carbon sequestration and its lability in reclaimed loess

Author:

Yelikbayev B. K.1ORCID,Pagano M. C.2ORCID,Mamedov A. I.3ORCID,Islam K. R.4ORCID

Affiliation:

1. Satbayev University Almaty Kazakhstan

2. Federal University of Minas Gerais Belo Horizonte Brazil

3. Arid Land Research Center Tottori University Tottori Japan

4. The Ohio State University South Centers Piketon Ohio USA

Abstract

AbstractSoils derived from loess are fertile but susceptible to accelerated degradation in response to agricultural practices. The objective of our study was to evaluate the long‐term effects of alfalfa (Medicago sativa L.) integrated with contrasting organic amendments (29 years) to rejuvenate degraded loess via total soil organic carbon (SOC) sequestration. The replicated study was conducted in concrete lysimeter plots (2 m long × 1 m wide × 60 cm deep) filled with degraded loess materials followed by planting of alfalfa with cattle manure (60 Mg/ha) or vermicompost (27 Mg/ha) amendments. After 29 years, SOC concentration increased by 5.3–6.2‐fold under alfalfa–organic amendments compared to the control. A similar impact of alfalfa–organic amendments was observed on the humic acid, fulvic acid, and humin concentrations. There was an overestimation of SOC stocks (151 ± 48 kg/ha) when equivalent depth was used compared to equivalent mass of soil. While the SOC sequestration rates were 614 ± 129, 710 ± 69, and 744 ± 161 kg/ha/year at 0–10 cm depth under alfalfa, alfalfa–manure, and alfalfa–vermicompost treatments, respectively, the SOC sequestration rates decreased with depth. Significantly higher values of carbon pool index (CPI) and carbon management index (CMI) under alfalfa–organic amendments justified our results associated with the SOC sequestration; however, the SOC lability (CL) decreased under alfalfa–organic amendments, when compared to the control. A significant nonlinear inverse relationship (R2 = 0.80) between the CPI and CL suggested that SOC sequestration is significantly dependent on its lability or vice versa. Our results suggested that the impact of alfalfa–organic amendments significantly rejuvenated the degraded loess soils via SOC sequestration.

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3