Electrical resistivity tomography through reinforced concrete floor

Author:

Yang Lichun1ORCID,Yang Dikun12ORCID,Yuan Quan3

Affiliation:

1. Department of Earth and Space Sciences Southern University of Science and Technology Shenzhen Guangdong China

2. Guangdong Provincial Key Laboratory of Geophysical High‐Resolution Imaging Technology Southern University of Science and Technology Shenzhen Guangdong China

3. Geomative Co., Ltd. Shenzhen Guangdong China

Abstract

AbstractThe electrical resistivity tomography (ERT) method is often challenged by the presence of reinforced concrete (RC) in urban and industrial environments, because the embedded metallic wire mesh can severely distort the distribution of subsurface currents. We investigate one typical scenario in real applications, in which an RC floor overlays the natural topsoil or rock. Our synthetic forward simulations show that the embedded wire mesh behaves like a local good conductor in data of small source‐receiver separations and acts like an equal‐potential object that keeps the potential from decaying at large source‐receiver separations. Routine ERT inversions that ignore the RC cannot work properly because the thin and highly conductive wire mesh may be manifested as large uninterpretable low‐resistivity anomalies in the imaging results. Two remedies are adopted to improve the ERT resolution in such cases. First, we find a top layer with high conductivity in our model to adequately represent the wire mesh; then, we initiate the inversion with the top‐layer model as the starting and reference model. This warm‐start approach overcomes the difficulty of recovering the large conductivity contrast between metallic objects and regular earth materials. Second, underground electrodes are added to the survey array, so more information from depth can be obtained to fight against the dominance of current channelling in the wire mesh. Finally, our strategies are used to invert a real ERT dataset from an indoor manufacturing plant, where RC covers the entire floor of the building and electrodes are in contact with the soil through open holes in the floor. Our simulation and field data inversion verify our findings and demonstrate the effectiveness of our solutions in improving the resolution of ERT when the survey is carried out over RC floor in urban and industrial environments.

Publisher

Wiley

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3