ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway in mice with osteoarthritis

Author:

Li Shen12,Han Jiangbo2,Cao Jiongzhe2,Han Hong2,Lu Bin3,Wen Tao2,Bian Weiguo1ORCID

Affiliation:

1. Department of Orthopedics The First Affiliated Hospital of Xi'an JiaoTong University Xi'an China

2. Department of Orthopedics Xi'an Chang'an District Hospital Xi'an China

3. Department of Anesthesiology Xi'an Chang'an District Hospital Xi'an China

Abstract

AbstractRecent studies have shown that chondrocyte ferroptosis contributes importantly to the pathogenesis of osteoarthritis (OA). However, it is largely unknown how it is regulated. In this study, the data sets GSE167852 and GSE190184 were downloaded from the Gene Expression Omnibus (GEO) database, and 161 differentially expressed genes (DEGs) related to ferroptosis were screened by bioinformatics analysis. Subsequently, ADORA2B was screened as a candidate gene from DEGs, which was significantly upregulated in palmitic acid (PA) treated chondrocytes. CCK‐8, EdU, Western blotting, and ferroptosis‐related kits assays demonstrated that knockdown of ADORA2B constrained ferroptosis and promoted viability of chondrocytes. Overexpression of ADORA2B promoted ferroptosis, while the PI3K/Akt pathway inhibitor LY294002 reversed the promotion of ADORA2B on ferroptosis. Dual‐luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated MYC was a transcription suppressor of ADORA2B, and overexpression of MYC promoted the viability, and inhibited the ferroptosis of chondrocytes, while ADORA2B overexpression abated the promotion of MYC on chondrocyte viability and the inhibition on ferroptosis. In vivo experiments showed that MYC overexpression alleviated cartilage tissue damage in OA mice, which was able to reversed by ADORA2B overexpression. In summary, ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway. Thus, ADORA2B can be used as a potential treatment target for ferroptosis‐related diseases.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3