Deep Learning for Automated Image Segmentation of the Middle Ear: A Scoping Review

Author:

Ross Talisa12ORCID,Tanna Ravina3,Lilaonitkul Watjana2,Mehta Nishchay24

Affiliation:

1. Department of Ear, Nose and Throat Surgery Charing Cross Hospital, Imperial College Healthcare NHS Trust London UK

2. evidENT Team, Ear Institute University College London London UK

3. Department of Ear, Nose and Throat Surgery Great Ormond Street Hospital London UK

4. Department of Ear, Nose and Throat Surgery Royal National Ear Nose and Throat Hospital London UK

Abstract

AbstractObjectiveConvolutional neural networks (CNNs) have revolutionized medical image segmentation in recent years. This scoping review aimed to carry out a comprehensive review of the literature describing automated image segmentation of the middle ear using CNNs from computed tomography (CT) scans.Data SourcesA comprehensive literature search, generated jointly with a medical librarian, was performed on Medline, Embase, Scopus, Web of Science, and Cochrane, using Medical Subject Heading terms and keywords. Databases were searched from inception to July 2023. Reference lists of included papers were also screened.Review MethodsTen studies were included for analysis, which contained a total of 866 scans which were used in model training/testing. Thirteen different architectures were described to perform automated segmentation. The best Dice similarity coefficient (DSC) for the entire ossicular chain was 0.87 using ResNet. The highest DSC for any structure was the incus using 3D‐V‐Net at 0.93. The most difficult structure to segment was the stapes, with the highest DSC of 0.84 using 3D‐V‐Net.ConclusionsNumerous architectures have demonstrated good performance in segmenting the middle ear using CNNs. To overcome some of the difficulties in segmenting the stapes, we recommend the development of an architecture trained on cone beam CTs to provide improved spatial resolution to assist with delineating the smallest ossicle.Implications for PracticeThis has clinical applications for preoperative planning, diagnosis, and simulation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3