Rubisco in high Arctic tidewater glacier‐marine systems: A new window into phytoplankton dynamics

Author:

Roberts Megan E.1ORCID,Bhatia Maya P.2ORCID,Rowland Elden1ORCID,White Patrick L.2ORCID,Waterman Stephanie3ORCID,Cavaco Maria A.2ORCID,Williams Patrick2ORCID,Young Jodi N.4ORCID,Spence Jenifer S.2ORCID,Tremblay Jean‐Éric5ORCID,Montero‐Serrano Jean‐Carlos6ORCID,Bertrand Erin M.1ORCID

Affiliation:

1. Department of Biology Dalhousie University Halifax Nova Scotia Canada

2. Department of Earth and Atmospheric Sciences University of Alberta Edmonton Alberta Canada

3. Department of Earth, Ocean and Atmospheric Sciences University of British Columbia Vancouver British Columbia Canada

4. School of Oceanography University of Washington Seattle Washington USA

5. Department of Biology Québec‐Océan and Takuvik, Université Laval Québec Quebec Canada

6. Institut des Sciences de la Mer Université du Québec à Rimouski Rimouski Quebec Canada

Abstract

AbstractThe hundreds of tidewater glaciers found in the Canadian Arctic Archipelago have the potential to enhance delivery of nutrients and other material to the surface ocean. Despite this, their influence on marine ecosystems, specifically phytoplankton, is poorly characterized. Here we developed and applied a quantitative mass spectrometry‐based approach to measure phytoplankton ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) concentrations to examine differences in productivity in glacierized and non‐glacierized marine systems in Jones Sound, Nunavut, within Inuit Nunangat. Comparisons to chloroplast 16S rRNA gene amplicon sequencing data suggested that these measurements detect the majority of Rubisco produced in Jones Sound. Because Rubisco catalyzes carbon fixation, we used these measurements to estimate total and group‐specific primary production potential, which were within the range of historical primary production measurements made using classical methods in this region. Our measurements also revealed that up to 2% of total protein in the water column is Rubisco, and that Rubisco concentrations are correlated with chlorophyll fluorescence, with maxima near the nitracline. Rubisco produced by diatom genera Chaetoceros and Thalassiosira were higher in marine regions influenced by glaciers, while Rubisco from Micromonas (Chlorophyta) was greater in non‐glacierized regions. This suggests that future climate scenarios may favor smaller phytoplankton groups, like Micromonas, with consequences for food webs and carbon cycling. This study broadens our understanding of how tidewater glaciers will impact phytoplankton communities, now and in a warmer future, and lays the foundation for using this mass spectrometry‐based approach to quantify phytoplankton group‐specific carbon fixation potential in other marine regions.

Funder

Natural Sciences and Engineering Research Council of Canada

ArcticNet

Simons Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3